(x^2+7x)+(-6x^2-3x=)

Simple and best practice solution for (x^2+7x)+(-6x^2-3x=) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2+7x)+(-6x^2-3x=) equation:



(x^2+7x)+(-6x^2-3x=)
We move all terms to the left:
(x^2+7x)+(-6x^2-3x-())=0
We get rid of parentheses
(-6x^2-3x-())+x^2+7x=0
We calculate terms in parentheses: +(-6x^2-3x-()), so:
-6x^2-3x-()
We add all the numbers together, and all the variables
-6x^2-3x
Back to the equation:
+(-6x^2-3x)
We add all the numbers together, and all the variables
x^2+(-6x^2-3x)+7x=0
We get rid of parentheses
x^2-6x^2-3x+7x=0
We add all the numbers together, and all the variables
-5x^2+4x=0
a = -5; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·(-5)·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*-5}=\frac{-8}{-10} =4/5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*-5}=\frac{0}{-10} =0 $

See similar equations:

| -7(7a-5)-4=4(-7+3a-2a | | 4(x+3)-4=89.5x+1) | | 2x2+8x-3=0 | | 82=2x+34 | | 1/2h=1/4h | | x-5=4x+2 | | 3x/4-4x/3=4 | | 6-10x+4=35-14x-1 | | (c+4)(c-4)=0 | | 4(z-1)=4z-4 | | (-6)-9x=(-9x)-4 | | 12=6+6y | | −7.8x=−1.56 | | 3/4k×3/8k=1/2 | | X+10=1x+5 | | 5+2x=2x6 | | (N/10)=9-(n/5) | | X-35=x | | 3|x-5|=12 | | (3z+4)(8+z)=0 | | 1/2x+10=18 | | x-3/4=7x+1/6 | | 35+7x+6=180 | | 4/5+y=2/7 | | 1-2b=10+B | | 2.9+10m=8.75 | | 2/7=4/5+y | | 5x-18-4=36 | | 3-0.75x=3(3-0.25) | | 1/2x+10=24 | | 5x+13+6x=-3+x-10 | | 6x+17=9x=2 |

Equations solver categories